
DRaCoN – Differentiable Rasterization Conditioned Neural Radiance Fields
for Articulated Avatars

Amit Raj1* Umar Iqbal2 Koki Nagano2 Sameh Khamis2 Pavlo Molchanov2

James Hays1 Jan Kautz2
1Georgia Institute of Technology 2NVIDIA Research

Figure 1. We present a Differentiable Rasterization conditioned Neural Radiance field (DRaCoN) as an approach for learning multiple
dynamic full body avatars from a monocular or multi-view RGB videos. A training frame of an identity is shown in the first column. Our
model provides articulation-based controls for the body model and allows novel view rendering of multiple avatars in arbitrary poses.

Abstract

Acquisition and creation of digital human avatars is
an important problem with applications to virtual telep-
resence, gaming, and human modeling. Most contempo-
rary approaches for avatar generation can be viewed ei-
ther as 3D-based methods, which use multi-view data to
learn a 3D representation with appearance (such as a mesh,
implicit surface, or volume), or 2D-based methods which
learn photo-realistic renderings of avatars but lack accu-
rate 3D representations. In this work, we present, DRa-
CoN, a framework for learning full-body volumetric avatars
which exploits the advantages of both the 2D and 3D neural
rendering techniques. It consists of a Differentiable Raster-
ization module, DiffRas, that synthesizes a low-resolution
version of the target image along with additional latent fea-
tures guided by a parametric body model. The output of
DiffRas is then used as conditioning to our conditional neu-

*Work done during an internship at NVIDIA.

ral 3D representation module (c-NeRF) which generates the
final high-res image along with body geometry using volu-
metric rendering. While DiffRas helps in obtaining photo-
realistic image quality, c-NeRF, which employs signed dis-
tance fields (SDF) for 3D representations, helps to obtain
fine 3D geometric details. Experiments on the challenging
ZJU-MoCap and Human3.6M datasets indicate that DRa-
CoN outperforms state-of-the-art methods both in terms of
error metrics and visual quality.

1. Introduction

The rising interest in creating digital embodiments of
real people for personalized gaming and immersive telep-
resence applications necessitates the creation of photore-
alistic full-body 3D digital avatars that are both scalable
and low-cost. Creating controllable full-body avatars from
monocular or multi-view videos of people in normal cloth-
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ing is a challenging problem due to the wide range of
plausible human motions, the lighting variations, and pose-
dependent clothing deformations. Most recent approaches
for relevant avatar generation can be categorized into: (i)
2D neural rendering methods, or (ii) 3D neural rendering
methods1.

2D neural rendering methods use 2D or 2.5D guiding in-
formation to conditionally render images of avatars in novel
views or poses [15, 22, 28, 30, 36, 44]. These methods ras-
terize some intermediate semantic labels or geometric rep-
resentations such as UV-images, shapes, or poses and use
2D CNN-based generators (i.e., image translation network)
to refine or render the final image from these intermedi-
ate representations. The main advantage of these methods
is that they produce high-resolution photorealistic render-
ing results thanks to the high-resolution screen-space inter-
mediate representations and high-capacity 2D CNN-based
generators. However, these 2D methods show limited multi-
view and temporal consistency in their rendering of novel
views or poses despite requiring a large amount of training
data, and do not learn the 3D representation of the object.

3D neural rendering methods, on the other hand, aim to
learn the 3D representation and appearance of the object or
person which can be rendered in novel views and poses. The
state-of-the-art methods in this direction use implicit func-
tions [31, 33] to model human avatars and use volumetric
rendering for image generation [14,25,26,39]. These meth-
ods not only provide 3D-consistent neural rendering but can
also model pose-dependent deformations. While these im-
plicit representations allow modeling the output as continu-
ous functions, the complexity of the signals they can repre-
sent can be potentially limited when trying to model com-
plex human body articulations and geometric variations,
leading to less photorealistic outputs compared to the 2D-
based neural rendering methods [15,28,30,36,44]. Further-
more, these approaches which only rely on fully implicit
architectures usually train a single network per identity and
lack the strong generalization power seen in the 2D CNN-
based generators.

In this work, we propose Differentiable Rasterization
Conditioned Neural Radiance Field (DRaCoN), that lever-
ages the advantages of both 2D and 3D neural rendering
methods. Our hybrid approach not only provides view-
consistent rendering but also achieves higher photoreal-
ism. DRaCoN learns a radiance field conditioned on pixel-
aligned features that are obtained by differentiably raster-
izing a high-dimensional latent neural texture for the target
body pose and view using a parametric human body model,
SMPL [18]. We enhance the rasterized neural texture with a
2D convolutional neural network which not only models the
inter-part dependencies, but also allows us to render a low-
resolution version of the target view before the volumetric

1We follow the 2D and 3D neural rendering definitions by [41]

rendering. We provide this low-resolution image as input
to the above-mentioned conditional radiance field network
with additional neural and geometric features, thereby, sim-
plifying the task of learning 3D view synthesis. We also
use the SMPL body model to warp the posed avatars into
a canonical space. This allows us to generate avatars in
arbitrary poses since the radiance fields are learned in the
canonical space without having to allocate the capacity for
modeling the body pose deformations. We demonstrate the
effectiveness of our proposed approach on the challenging
ZJU-MoCap and Human3.6M datasets.

To summarize, our contributions are as follows:

1. We present a novel hybrid framework for generating
full-body, clothed, and dynamic avatars that combines
screen-space and volumetric neural representations.

2. Our framework learns identity-specific appearance
space, allowing fine-grained dynamic texture synthe-
sis during pose retargeting or change without having
input images during inference.

3. We demonstrate the state-of-the-art performance on
novel view and novel pose synthesis compared to re-
cent volumetric approaches.

2. Related Work
The existing works in learning articulated human avatars

from RGB images or videos can be mainly classified into
two categories – 2D neural rendering-based methods and
3D neural rendering-based methods [41].

2.1. 2D Neural Rendering Methods

These methods aim to directly generate images of a
person in novel views and poses using image-space ren-
dering. Earlier methods treat the problem as an image-
to-image translation task. Given an image of a target
person with image representations of keypoints or dense
meshes or semantic labels, these methods use an image
translation model to directly render the target person in
the style or pose of the source person possibly in differ-
ent views [4, 5, 12, 19, 23, 27, 29, 44, 46, 49, 53]. The main
limitation of these methods is that they lack multi-view
and temporal consistency under significant viewpoint and
pose changes since these 2D-based method generally do
not learn any notion of 3D space. Instead of fully rely-
ing on the image-space translation network, Liquid Warping
GAN [15,16] uses UV-correspondences between the source
and target meshes to explicitly warp the source image to
the target pose and then uses an additional network to re-
fine the warped image. Given a target pose in form of 2D
keypoints, Huang et al. [8] predict the UV-coordinates of a
dense mesh in image space and then generate the target im-
age by sampling from a learned UV texture map. The main
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limitation of these methods is that they require some exem-
plar images to be available during inference, limiting their
semantic editing capability, such as fine-grained control of
the target appearance.

Textured Neural Avatar [36] removes the need of exem-
plar images but relies on multi-view data for training. Ar-
ticulated Neural Renderer (ANR) [30] builds on a similar
idea but instead uses reconstructed 3D meshes to rasterize a
learned neural texture on image space from which the final
rendered image is obtained using a convolutional network.
While these approaches show impressive results and have
the capability to generate photorealistic images, their out-
put is limited to 2D images only and does not provide 3D
representations of the person. Inspired by these methods,
we propose a method that not only renders photorealistic
images but also learns 3D representation of the person, al-
lowing view-consistent rendering under large view or pose
changes.

2.2. 3D Neural Rendering Methods.

These methods aim to create geometric representations
of avatars as well as their 3D appearance that can be ren-
dered in novel viewpoints and poses.
Mesh-Based Approaches. Given a monocular or multi-
view video, earlier methods reconstruct the detailed geom-
etry and textures using parametric mesh fitting [1, 2, 7, 52].
Alldieck et al. [2] fit the SMPL body model to all frames
and optimize for per-vertex offsets using person silhouette
information to capture the clothing and hair details. A de-
tailed texture map is then generated by back-projecting the
image colors to all visible vertices. The novel views and
poses of the person can be easily generated by articulating
the SMPL mesh and rendering it to the image with the ob-
tained texture map. The methods [1, 52] adopt a similar
strategy but replace the optimization-based framework used
in [2] with learning-based components for faster process-
ing. In all cases, they produce a parametric mesh with a
texture map which can be articulated and rendered in a new
view. However, the main limitation of these methods is that
they rely on a fixed mesh topology which cannot accurately
capture complex clothing and hair geometries. Also, the
articulated meshes do not account for pose-conditioned ge-
ometric deformations and changes in texture. Hence, the
rendered results lack realism and high-frequency details. In
contrast, our volumetric representation directly learns these
details that are not captured by the parametric models.
Implicit Approaches. More recently, PIFu and PIFuHD
[32,34] proposed to use implicit functions and pixel-aligned
features for human reconstruction from single or multi-view
RGB images. Since the implicit functions represent the
body’s surface in a continuous 3D space, these methods
can reconstruct highly-detailed human body shape. How-
ever, the reconstructed geometries are not rigged and can-

not be articulated in novel poses. To this end, ARCH [9] and
S3 [47] also reconstruct meshes that can be articulated with
novel poses. However, similar to other mesh-based models,
rendering the reconstructed bodies in novel poses does not
account for pose-dependent deformations. Scanimate [35]
learns to fit a deformable implicit function of surface data
to RGBD scans, allowing for additional articulation but re-
quires 3D supervision to train.

The most recent methods take inspiration from
NeRF [21] or its variants [3,13,24,43,50] and represent hu-
man avatars using pose-conditioned implicit 3D representa-
tions [11, 14, 25, 26, 42]. We refer the readers to the com-
prehensive report on advances in neural rendering [41] for
additional insight about these approaches. These methods
not only allow photorealistic novel view synthesis but also
provide detailed human body geometry with pose depen-
dent variations. NeuralBody [26] exploits the SMPL body
model and learn latent codes corresponding to each vertex.
These latent codes are then diffused using a sparse convolu-
tion module and sampled according to the target body pose
and used to condition the NeRF model. A-NeRF [39] and
AnimatableNeRF [25] use body pose information to canon-
icalize the sampled rays and learn neural radiance fields
in the canonical space, which helps the learned avatar to
generalize across different poses. Our hybrid framework
leverage advantages of multiple representations: the para-
metric model provides articulation-based controls and pro-
motes generalization through learnable neural textures en-
hanced by a 2D CNN-based generator, while our NeRF en-
ables conditional 3D view synthesis and high-fidelity 3D
geometry extraction.

3. Method

Our goal is to learn a controllable full-body avatar that
can synthesize geometrically consistent images of the per-
son in novel views using 3D neural rendering, while also
leveraging the advantages of 2D neural rendering for pho-
torealism. For training, we assume a set of calibrated multi-
view or monocular videos is available. We also assume that
the human bodies in the training video frames have been
tracked using the SMPL [18] body model. An overview
of our approach can be seen in Figure 2. Our frame-
work consists of three modules: differentiable rasterization
(DiffRas) (Section 3.2), WarpField (Section 3.3) module
and conditional-NeRF module (Section 3.4). Given a target
pose represented as the parameters of SMPL body model,
DiffRas rasterizes high-dimensional identity-specific neu-
ral features in the target view. These pixel-aligned features
are then used as a condition during 3D neural rendering.
To simplify the learning of otherwise highly dynamic hu-
man bodies, the WarpField module maps the sampled 3D
points in 3D world space to a canonical space. Finally, the
canonicalized 3D points and pixel-aligned features are fed
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Figure 2. Overview of the proposed approach. Given a target camera and a parametric body model of an arbitrary pose, DRaCoN i)
employs a differentiable rasterizer with identity-specific neural textures to rasterize pixel-aligned neural features for the target view; ii)
warps the 3D rendering points from the posed space to canonical volume using a learned warping field and samples neural features; iii)
uses the rendered pixel-aligned features as input to the conditional neural 3D representation module (c-NeRF) which produces the final
image using volumetric rendering. We can also extract fine surface geometry as the zero-level set of the predicted signed distance values.

as input to the conditional neural 3D representation module
(c-NeRF) which generates the final high-res image and de-
tailed 3D surface geometry using volumetric rendering. In
the following, we explain each of these modules in greater
details.
3.1. Preliminaries

Given a set of posed images {Ii ∈ RH×W×3}Ni=1 with
their associated intrinsic {Ki}Ni=1 and extrinsic camera pa-
rameters (rotation {Ri}Ni=1 and translation {Ti}Ni=1), we
define the world to camera projection as Pi=Ki[Ri|Ti].
We also assume that the pose and shape parameters (θi ∈
R24×3, βi ∈ R10) of the tracked SMPL meshes for each
frame i are available from which the 3D mesh vertices V
can be obtained using a linear function Vi = M(θi, βi) as
defined in [18].

NeRF [21] learns a function N (x,d) : RNx×Nd → R4

which takes the positional encodings of a world space po-
sition x and viewing direction d as input and returns the
radiance c ∈ R3 and associated differential opacity α ∈ R
at that location:

c, α = N (γL(x), γM (d)),

where γL(x) and γM (d) are the positional encodings of x
and d with L and M octaves, respectively, as described in
[20]. For ease of readability we drop the dependence on d
in all future discussion.

The NeRF network is trained by tracing rays into the
scene from a camera origin through each pixel of the im-
age. For image i the jth pixel location is given by uj

i ∈ R2

and the camera origin o ∈ R3 and ray direction d ∈ R3 are
calculated as follows:

oi = −R−1
i Ti, (1)

dj
i =

P−1uj
i − oi

||P−1uj
i − oi||

. (2)

We then sample points uniformly along the ray given by

xj
i (t) = oi + tdj

i .

We drop the parameterization variable t in all subsequent
equations for notational simplicity.
3.2. Differentiable Rasterization (DiffRas)

Our goal is to generate pixel-aligned features
F ∈ RH×W×D capturing the geometric and appear-
ance properties of the person in the target viewpoint and
body pose. In order to make sure that these features are
consistent across different body poses and views, we
define them in the canonical UV-space of the SMPL body
model and rasterize them with the 3D mesh. Specifically,
we learn a set of D-dimensional (D=128) neural features
Zi ∈ RM×M×D where the spatial coordinates correspond
to the UV-coordinates of SMPL. Given the SMPL vertices
Vi, DiffRas differentiably rasterizes these neural features to
the image space: DiffRas(Z,Vi) → Fi. The learnable
neural features Z are optimized end-to-end using the image
reconstruction losses over all training frames.

Unlike previous works which rely on pixel-aligned fea-
tures from exemplar images, [31, 51], the addition of the
differentiable rasterizer eschews the need for input images
during inference as the pixel-aligned features can now be
rasterized on the fly for any arbitrary viewpoint for any
identity. In practice, we enforce the first three channels of
Fi to be a low resolution version the target image. This al-
lows to exploit the latest advances in 2D neural rendering,
for example, by using photometric and perceptual losses on
the generated images to improve photo-realism. Also, since
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the features are already rasterized in the target pose, it sim-
plifies the problem for subsequent components of our ap-
proach. In contrast to existing methods [25, 26, 39] which
encode all appearance and geometric details in the NeRF
module using a highly non-linear mapping, our approach
learns these details in a well-defined UV-space thereby sim-
plifies neural avatar learning.

3.3. Warping Fields

The NeRF model as originally proposed in [21] is trained
for static scenes only. To simplify learning of the complex
articulated geometries of human bodies, we map sampled
points x in posed space to canonical space before passing
them to c-NeRF using a warping field W . Particularly, each
point xj

i in posed space is mapped to point x̂ = W(x) in
the canonical space.

However, as shown in [17], learning the warping field
and N (x) simultaneously is an under-constrained problem.
To this end, we exploit the tracked SMPL meshes to regular-
ize the learning of the warping field. Specifically, let Gk(θ)
represent the local transformation of joint k with respect to
its parent in the SMPL body model, we define the trans-
form to warp a canonical vertex v̂l ∈ R3 to posed space as
follows:

ϕ(vl) =

J∑
m=1

wm(vl)(
∏

k∈Km

Gk(θ)), (3)

where Km is the kinematic chain for joint m and wm(v) are
the skinning weight associated with vertex vl. The location
of the posed vertex is obtained as: vl = ϕ(v̂l)v̂l.

We use this skinning field to initialize the warping field
W . Specifically, for any point xj

i in posed space, we find
the vertex v ∈ Vi that is closest to this point, and use the
associated skinning weights to canonicalize xj

i :

p(x) = min
v∈V

||x− v||, (4)

x̂ = W(x) = ϕ−1(p(x))x. (5)

Learning Residuals for Warp Field. The skinning weights
associated with the naked body model do not account for the
geometry outside the parametric mesh or pose-based geo-
metric deformation of clothing. To account for these varia-
tions, we learn a residual field ∆W(x, fxi ) : R3+d → R3

and obtain the final canonicalized point x̂c as:

x̂c = x̂+∆W(x, fxi ).

Here fxi ∈ Fi are the pixel-aligned feature associated with
point x obtained from the differentiable rasterizer (Sec-
tion 3.2).

3.4. Conditional 3D Representation

The DiffRas module produces a low resolution image
with no associated geometric information. To this end,
we learn a conditional neural 3D representation (c-NeRF)
model that takes as input x̂c and pose-specific features fxi ,
and produces a high-fidelity 3D surface geometry as well
as generates a higher resolution version of the image. We
follow [43,48] and represent the avatar using two functions
Nsdf and Ncolor responsible for modeling surface geometry
and texture, respectively. The neural signed distance func-
tion (SDF) Nsdf : RL+D → R takes as input the positional
encoding of the canonicalized point x̂c and pose-specific
features fxi and produces the signed distance of the point
w.r.t. body surface geometry. Following [48], we generate
the differential opacity at the point from the SDF using the
following function:

α = Ψ(Nsdf (x̂
c, fxi ), β).

where Ψ is the cumulative distribution function (CDF) of a
lapalacian distribution with scale β which is a learnable pa-
rameter. The function Nrgb also takes x̂c and pose-specific
features fxi and produces the color, c = Nrgb(x̂

c, fxi ), as-
sociated with the point. To better inform the input, we also
concatenate the UV-coordinates of the sampled features as
an additional information. The final RGB image is gener-
ated using volume rendering and the 3D geometry is ob-
tained as the the zero-level set of the SDF.

Note that using SDF to represent body surface has the
advantage that it is interpretable and the geometry can be
extracted easily without the need of a careful selection of
threshold for density values as used in existing NeRF-based
neural avatar methods [25, 26, 39].

3.5. Training and Losses

Texture Branch: The c-NeRF network is trained with a
photometric reconstuction loss for the color C(uj

i ) accu-
mulated along each ray w.r.t ground truth color Ĉ(uj

i ):

Lrecon = ||C(uj
i )− Ĉ(uj

i )||2.

We also find that the warping module can “cheat” by gen-
erating large ∆x values that place the sampled points at ar-
bitrary locations to help optimize the learning. This causes
generalization to suffer as the mapping for novel poses be-
come uncertain. We constrain the norm of the deformation
to limit the maximal displacement that the warping module
can produce:

Ldelta = ||∆W(x, fi
x)||2

The c-NeRF network is then optimized as follows:

Lnerf = λreconLrecon + λdeltaLdelta (6)
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DiffRas Branch: While there is no exact supervision for
the output of DiffRas module F, we constrain the first three
channels of F as in ANR [30] as follows:

Lpixel = ||Fi[: 3]− Ii||.

Lvgg =
∑
l

wl||ϕl(Fi)[: 3]− ϕl(Ii)||.

Where, ϕl return features at different layers of a pretrained
VGG-network [37] .Additionally, we constrain the fourth
channel to learn the mask of the generated identity.

Lmask = BCE(Fi[4],Mi).

The total loss for the DiffRas branch is then computed as:

LDiffRas = λpixelLpixel + λvggLvgg + λmaskLmask. (7)

Geometry Branch: The geometry network, Nsdf , is en-
couraged to learn SDF by using the eikonal regularization
[6]:

Leik = ||∆Nsdf (x, f
x)− 1||. (8)

Additionally, to encourage smoothness of the learnt geome-
try we apply a Total Variation (TV) loss over the estimated
density as follows:

LTV = ||Ψ(x)−Ψ(x+ δx)||. (9)

Furthermore, following Sitzmann et al. [38], we apply ex-
ponential regularization for encouraging non-zero SDF at
almost all locations except the surface:

Lexp = Ex[exp (−α ∗ Nsdf (x))] (10)

where α >> 1. Finally, we also use an SMPL guided SDF
regularization, Lface, for the face region that encourages
SDF of the samples around face regions to be close to SDF
w.r.t to SMPL mesh. The regularization for the geometry is
then given by:

Lgeom = λeikLeik + λTVLTV + λexpLexp + λfaceLface (11)

The training objective for our framework is thus given
by

LDRaCoN = wnerfLnerf︸ ︷︷ ︸
NeRF objective

+wDiffRasLDiffRas︸ ︷︷ ︸
DiffRas objective

+ wgeomLgeom︸ ︷︷ ︸
Geometry Regularization

(12)

3.6. Progressive Growing

In practice, we first train both the DiffRas and c-NeRF
at a low resolution and then train c-NeRF at successively
higher resolutions while keeping the resolution of DiffRas
constant. This progressive training accelerates the conver-
gence since the network mostly needs to focus on the coarse
structures early in the training. We also calculate a per-
frame affine transform that crops the image in the scene to
the tightest 256 × 256 image. This ensures that the DiffRas
always sees similarly sized images regardless of where the
actor is in the world space.

4. Experiments
We evaluate our results with datasets commonly used for

learning full body dynamic avatars from videos and com-
pare results with state-of-the-art baselines.

4.1. Dataset

ZJU Mocap [26]: The ZJU mocap dataset consists of ac-
tors performing various activities captured in 23 videos. In
all our settings, we train our model on 4 views (as in [26])
on 300 frames. We train the multi-identity model on 4 si-
multaneous identities. We evaluate novel view information
on the remaining cameras of training poses and novel pose
information on test cameras of unseen poses.
Human3.6M [10]: We follow the protocol defined in [25]
and train our model on 3 cameras and evaluate the perfor-
mance of our method on the remaining cameras for novel
view and poses on a selected subset of of Human3.6M
dataset.

4.2. Baselines

We compare our approach with the following baselines:
Animatable NeRF [25]. Canonicalizes sampled points
based on the skinning weights of a parametric mesh and
learns a single body model for each data. The main dif-
ference of [25] and our approach involves the residual cal-
culation. Particularly, animatable-nerf learns residual blend
weights rather than a residual in canonical space as in our
framework.
NeuralBody [26]. NeuraBody learns to associate a latent
code with each vertex of a deformable body model and then
performs ray tracing on the diffused version of these learned
latent codes.
A-NeRF [39]. Uses only pose information and defines pose
relative encodings to learn an avatar that can be rendered in
novel views and poses.
NHR [45]. Neural Human Rendering uses sparse point
clouds to render multi-view images without explicit pose
based reasoning.

4.3. Quantitative Analysis

We evaluate the approaches using MSE, PSNR, SSIM
and LPIPS metrics for all testing frames in all settings. Ta-
ble 1 and Table 2 compare our approach with the state-of-
the-art methods on ZJU and Human3.6M respectively. We
use S9 and S11 for evaluation for Human3.6M, which are
the commonly used testing subjects. The generated images
used for evaluation of the state-of-the-art methods are pro-
vided by [25].

4.4. Qualitative Analysis

Fig. 3 and Fig. 5 shows the performance of our method
compared to above methods on the ZJU-Mocap and Hu-
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A-NeRF Animatable Neural Ours Ground A-NeRF Animatable Neural Ours Ground
[39] NeRF [25] Body [26] Truth [39] NeRF [25] Body [26] Truth

Figure 3. Comparison of novel view and pose synthesis (a) A-NeRF [39] (b) Animatable NeRF [25] (c) NeuralBody [26] (d) Ours. Our
model is able to retain textures better owing to conditional features from DiffRas while also produces better person shapes.

ZJU-315 ZJU-377 User Study
SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ Num Votes Mean preference

Alexnet VGG Alexnet VGG
A-NeRF 0.930 17.711 0.094 0.073 0.927 16.528 0.101 0.077 53 7.5± 1.5%

Anim-NeRF 0.917 16.774 0.101 0.083 0.940 17.971 0.075 0.066 15 2.5± 0.64%
NB 0.947 18.608 0.092 0.090 0.950 20.072 0.071 0.060 168 24± 3.25%

Ours 0.922 21.315 0.053 0.046 0.946 21.084 0.048 0.044 464 66± 4%

Table 1. Novel pose synthesis results on ZJU-Mocap dataset. Our approach outperforms recent baselines on most supervised metrics

DiffRas c-NeRF Geometry GT DiffRas c-NeRF Geometry GT

Figure 4. Novel view (above) and novel pose (below) results of
each stage of our model. We see that the c-NeRF module adds nec-
essary details using intermediate output from the DiffRas stage.
The geometry is obtained by sampling Nsdf using a uniform grid
and running marching cubes over it.

man3.6 dataset. We observe that Animatable-NeRF per-
forms poorly on novel poses without additional refinement.
Inference time refinement is inconvenient as it involves an
optimization step which adds some cost to the inference

speeds. Additionally, as seen in the last row of Fig. 5,
Animatable-NeRF fails to maintain the shape of the actor
under novel poses. NeuralBody generates high quality re-
sults for novel views, however struggles with novel poses.
It collapses in a multi-ID setting. We demonstrate perfor-
mance comparison of our method against a multi-ID Neu-
ralBody setting in the supplementary. Additionally, We see
that A-NeRF overfits to training views due to its high di-
mensional pose relative encoding which require large num-
ber of poses to train. In contrast our c-NeRF renderer is
able to generalize to novel poses, due to pixel level condi-
tioning information from intermediate neural features. Fig
4 shows the intermediate output of the DiffRas stage and
the reconstructed geometry for the novel pose. We see that
the c-NeRF adds additional texture information while also
providing access to deformable geometry of the actor.
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NHR [45] Neuralbody [26] Animatable-NeRF [25] Ours GT

Figure 5. Comparison of novel view (odd rows) and novel pose
(even rows) synthesis w.r.t NHR, Neuralbody, and Animatable-
Nerf. Our model preserves the shape of the actor under novel
poses.

Ours(−LDiffRas) Ours(−Lface) Ours(−Leik) Ours(−Ldelta) Ours Ground Truth

Figure 6. We demonstrate the importance of each module in our
framework by comparing against models trained under the follow-
ing settings: (a) without LDiffRas (b) without Lface (c) without
Leik and (d) without Ldelta

4.5. User study

Since most of the metrics used serve mostly as a proxy
to perceptual quality, we perform a user study to com-
pare avatars generated using different methods. Particularly,
each user is presented with 20 randomly sampled views in
novel poses across 4 different identities for 8 seconds. The
user is asked to rate which of the 4 avatars looks most real-
istic. We collected this data over 35 random subjects. The
demographics include both technical experts who work on
digital avatars and general audience. The results (Table. 1)
of the study indicate that our method is preferred 66 % of
the time as compared to the the next highest rated method
(NeuralBody [26]) at 24%.

4.6. Ablation Study

We study the following important questions with respect
to our framework.

MSE ↓ SSIM ↑ PSNR ↑ LPIPS ↓
Alexnet VGG

D-NeRF 2.34 0.946 26.47 0.082 0.058
NHR 0.82 0.976 27.91 0.026 0.024
NB 0.66 0.977 27.93 0.039 0.029

Anim-NeRF 0.50 0.979 28.11 0.035 0.028

Ours 0.32 0.985 29.42 0.023 0.022

Table 2. Novel pose synthesis results on Human3.6M dataset. Our
approach outperforms recent baselines on most supervised metrics

Need for DiffRas Objective The DiffRas objective con-
strains the first four channels of the intermediate features,
we see in Fig. 6 and Table 3 that without this con-
straint, the c-NeRF module cannot effectively learn higher
frequency information and the results are significantly
noisier. This constraint helps ease the learning problem
by providing supervision for lower frequency information
(since it is trained at a lower resolution).
Effect of Face Regularization The advantage of the SDF
representation is seen by the use of this regularization.
Since tracking errors can lead to significant facial blurring,
regularizing the face shape w.r.t base SMPL mesh alleviates
the texture averaging in facial region to some extent.

MSE ↓ SSIM ↑ PSNR ↑ LPIPS ↓
Ours(−LDiffRas) 3.511 0.957 24.546 0.053

Ours(−Leik) 1.767 0.975 27.526 0.033
Ours(−Lface) 1.785 0.975 27.485 0.031
Ours(−Ldelta) 1.402 0.977 27.531 0.031

Ours 1.568 0.977 28.045 0.026

Table 3. Ablation results on models trained on ID-337 of ZJU-
mocap dataset

5. Discussion
Limitations and Future Work. Although our approach is
robust to large pose or view changes, tracking errors during
parametric body fitting can create inaccurate canonicaliza-
tion or misalignments in neural textures. It may be fruit-
ful to explore directions which do not require explicit para-
metric model fitting [35] or learn 3D surfaces directly from
videos [24, 43, 48]. Also our end-to-end inference time is
potentially slow for real-time applications and interesting
future directions include scaling the approach to both high-
resolution and real-time rendering.
Ethical Considerations. A technique to synthesize photo-
realistic images of people from a monocular video could be
misused to create manipulated imagery of real people. Such
misuse of media synthesis techniques pose a societal threat.
Viable countermeasure solutions include watermarking the
model data or output [40, 51].
Conclusion. By combining parametric body models with
high-dimensional neural textures and dynamic conditional
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radiance field network, our approach demonstrates impor-
tant steps toward the generation of controllable and photore-
alistic 3D avatars of multiple people. We believe the avatar
creation from a casual video input may lead to the democ-
ratization of the high-quality personalized digital avatars.
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